Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Fish Shellfish Immunol ; 148: 109515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499218

RESUMO

As a multipotent cytokine, interleukin (IL)-2 plays important roles in activation, differentiation and survival of the lymphocytes. Although biological characteristics and function of IL-2 have been clarified in several teleost species, evidence regarding IL-2 production at the cellular and protein levels is still scarce in fish due to the lack of reliable antibody. In this study, we developed a mouse anti-Nile tilapia IL-2 monoclonal antibody (mAb), which could specifically recognize IL-2 protein and identify IL-2-producing lymphocytes of tilapia. Using this mAb, we found that CD3+ T cells, but not CD3- lymphocytes, are the main cellular source of IL-2 in tilapia. Under resting condition, both CD3+CD4-1+ T cells and CD3+CD4-1- T cells of tilapia produce IL-2. Moreover, the IL-2 protein level and the frequency of IL-2+ T cells significantly increased once T cells were activated by phytohemagglutinin (PHA) or CD3 plus CD28 mAbs in vitro. In addition, Edwardsiella piscicida infection also induces the IL-2 production and the expansion of IL-2+ T cells in the spleen lymphocytes. These findings demonstrate that IL-2 takes part in the T-cell activation and anti-bacterial adaptive immune response of tilapia, and can serve as an important marker for T-cell activation of teleost fish. Our study has enriched the knowledge regarding T-cell response in fish species, and also provide novel perspective for understanding the evolution of adaptive immune system.


Assuntos
Antígenos CD28 , Interleucina-2 , Animais , Anticorpos Monoclonais , Complexo CD3 , Interleucina-2/genética , Ativação Linfocitária , Linfócitos T , Tilápia
2.
J Immunol ; 212(7): 1113-1128, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363204

RESUMO

As an immune checkpoint, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) suppresses the activation, proliferation, and effector function of T cells, thus preventing an overexuberant response and maintaining immune homeostasis. However, whether and how this immune checkpoint functions in early vertebrates remains unknown. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell response by CTLA-4 in bony fish. Tilapia CTLA-4 is constitutively expressed in lymphoid tissues, and its mRNA and protein expression in lymphocytes are upregulated following PHA stimulation or Edwardsiella piscicida infection. Blockade of CTLA-4 signaling enhanced T cell activation and proliferation but inhibited activation-induced T cell apoptosis, indicating that CTLA-4 negatively regulated T cell activation. In addition, blocking CTLA-4 signaling in vivo increased the differentiation potential and cytotoxicity of T cells, resulting in an enhanced T cell response during E. piscicida infection. Tilapia CTLA-4 competitively bound the B7.2/CD86 molecule with CD28, thus antagonizing the CD28-mediated costimulatory signal of T cell activation. Furthermore, inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, c-Myc, or glycolysis markedly impaired the CTLA-4 blockade-enhanced T cell response, suggesting that CTLA-4 suppressed the T cell response of tilapia by inhibiting mTORC1/c-Myc axis-controlled glycolysis. Overall, the findings indicate a detailed mechanism by which CTLA-4 suppresses T cell immunity in tilapia; therefore, we propose that early vertebrates have evolved sophisticated mechanisms coupling immune checkpoints and metabolic reprogramming to avoid an overexuberant T cell response.


Assuntos
Ciclídeos , Linfócitos T , Animais , Antígeno CTLA-4 , Antígenos CD28 , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ativação Linfocitária , Glicólise , Mamíferos
3.
Phys Chem Chem Phys ; 26(7): 6008-6021, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293905

RESUMO

Fluorescence resonance energy transfer (FRET) is an important mechanism to design ratiometric fluorescent probes that are able to detect analytes quantitatively according to the ratio of two well-resolved emission signals. Two-photon (TP) fluorescent probes can realize the detection in living cells and tissues with deeper penetration depth, higher resolution, and lower photodamage in contrast to one-photon fluorescent probes. However, to date, fabricating TP-FRET ratiometric fluorescent probes possessing large two-photon absorption (TPA), high fluorescence quantum yield and perfect FRET efficiency is still challenging. Consequently, to develop excellent TP-FRET ratiometric probes and explore the relationship between their molecular structures and TP fluorescence properties, in this paper, we designed a series of H2S-detecting TP fluorescent probes employing the FRET mechanism based on an experimental probe BCD. Thereafter, we comprehensively evaluated the TP sensing performance of these probes by means of time-dependent density functional theory and quadratic response theory. Furthermore, we determined energy transfer efficiency and fluorescence quantum yield. Significantly, through regulating benzene-fused positions, we successfully improved fluorescence quantum yield and TPA cross-section simultaneously. Large spectral overlap between energy donor emission and acceptor absorption was achieved and near perfect energy transfer efficiency was acquired for all the studied probes. We revealed that these probes exhibit two well-resolved TPA bands, which are contributed by FRET donors and acceptors, respectively. Especially, both the wavelengths and the cross-sections of the two TPA bands agree well with those of energy donors and acceptors, which is the unique TPA spectral profile of FRET probes and has never been previously reported. Moreover, we proposed an excellent TP-FRET probe BCD3 and its product molecule BCD3-H2S, which exhibit large Stokes (141 nm and 88 nm) and emission shifts (5931 cm-1), as well as greatly increased TP action cross-sections (24-fold and 60-fold) in the near-infrared region with respect to BCD and BCD-H2S. Our detailed study can give an insight into the efficient design of novel TP-FRET fluorescent probes.

4.
J Control Release ; 365: 74-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972761

RESUMO

Metastatic recurrence and postoperative wound infection are two major challenges for breast cancer patients. In this study, a multifunctional responsive hydrogel system was developed for synergistic reoxygenation and chemo/photothermal therapy in metastatic breast cancer and wound infection. The hydrogel system was obtained by cross-linking Prussian blue-modified N-carboxyethyl chitosan (PBCEC) and oxidized sodium alginate using the amino and aldehyde groups on the polysaccharides, resulting in the formation of responsive dynamic imine bonds. Conditioned stimulation (e.g., acid microenvironment) enabled the controlled swelling of hydrogels as well as subsequent slow release of loaded doxorubicin (DOX). Additionally, this hydrogel system decomposed endogenous reactive oxygen species into oxygen to relieve the hypoxic tumor microenvironment and promote the healing of infected-wounds. Both in vitro and in vivo experiments demonstrated the synergistic reoxygenation and chemo/photothermal effects of the PB/DOX hydrogel system against metastatic breast cancer and its recurrence, as well as postoperative wound infection. Thus, the combination of reoxygenation and chemo/photothermal therapy represents a novel strategy for treating and preventing tumor recurrence and associated wound infection.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Terapia Fototérmica , Hidrogéis/química , Infecção da Ferida Cirúrgica/terapia , Linhagem Celular Tumoral , Fototerapia/métodos , Hipertermia Induzida/métodos , Doxorrubicina , Microambiente Tumoral
5.
J Med Virol ; 95(11): e29233, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009694

RESUMO

The COVID-19 pandemic emphasizes the significance of studying coronaviruses (CoVs). This study investigates the evolutionary patterns of 350 CoVs using four structural proteins (S, E, M, and N) and introduces a consensus methodology to construct a comprehensive phylogenomic network. Our clustering of CoVs into 4 genera is consistent with the current CoV classification. Additionally, we calculate network centrality measures to identify CoV strains with significant average weighted degree and betweenness centrality values, with a specific focus on RaTG13 in the beta genus and NGA/A116E7/2006 in the gamma genus. We compare the phylogenetics of CoVs using our distance-based approach and the character-based model with IQ-TREE. Both methods yield largely consistent outcomes, indicating the reliability of our consensus approach. However, it is worth mentioning that our consensus method achieves an approximate 5000-fold increase in speed compared to IQ-TREE when analyzing the data set of 350 CoVs. This improved efficiency enhances the feasibility of conducting large-scale phylogenomic studies on CoVs.


Assuntos
COVID-19 , Pandemias , Humanos , Filogenia , Consenso , Reprodutibilidade dos Testes
6.
Polymers (Basel) ; 15(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836082

RESUMO

Microparticles have been applied in many areas, ranging from drug delivery, diagnostics, cosmetics, personal care, and the food industry to chemical and catalytic reactions, sensing, and environmental remediation. Coating further provides additional functionality to the microparticles, such as controlled release, surface modification, bio-fouling resistance, stability, protection, etc. In this study, the conformal coating of microparticles with a positively charged polyelectrolyte (polyallylamine hydrochloride, PAH) by utilizing an acoustofluidic microchip was proposed and demonstrated. The multiple laminar streams, including the PAH solution, were formed inside the microchannel, and, under the traveling surface acoustic wave, the microparticles traversed through the streams, where they were coated with PAH. The results showed that the coating of microparticles can be achieved in a rapid fashion via a microfluidic approach compared to that obtained by the batch method. Moreover, the zeta potentials of the microparticles coated via the microfluidic approach were more uniform. For the unfunctionalized microparticles, the charge reversal occurred after coating, and the zeta potential increased as the width of the microchannel or the concentration of the PAH solution increased. As for the carboxylate-conjugated microparticles, the charge reversal again occurred after coating; however, the magnitudes of the zeta potentials were similar when using the microchannels with different widths or different concentrations of PAH solution.

7.
J Environ Manage ; 347: 119033, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757691

RESUMO

Milk vetch (Astragalus sinicus L.) is leguminous green manure (GM) which produces organic nitrogen (N) for subsequent crops and is widely planted and utilized to simultaneously reduce the use of synthetic N fertilizer and its environmental costs in rice systems. Determination of an optimal N application rate specific to the GM-rice system is challenging because of the large temporal and spatial variations in soil, climate, and field management conditions. To solve this problem, we developed a framework to explore the site-specific N application rate for the low-N footprint rice production system in southern China based on multi-site field experiments, farmer field survey, and process-based model (WHCNS_Rice, soil water heat carbon nitrogen simulator for rice). The results showed that a process-based model can explain >83.3% (p < 0.01) of the variation in rice yield, aboveground biomass, crop N uptake, and soil mineral N. Based on the scenario analysis of the tested WHCNS_Rice model, the simple regression equation was developed to implement site-specific N application rates that considered variations in GM biomass, soil, and climatic conditions. Simulation evaluation on nine provinces in southern China showed that the site-specific N application rate reduced regional synthetic N fertilizer input by 29.6 ± 17.8% and 65.3 ± 23.0% for single and early rice, respectively; decreased their total N footprints (NFs) by 23.4% and 49.3%, respectively; and without reduction in rice yield, compared with traditional farming N practices. The reduction in total NF was attributed to the reduced emissions from ammonia volatilization by 35.2%, N leaching by 28.4%, and N runoff by 32.7%. In this study, we suggested a low NF rice production system that can be obtained by combining GM with site-specific N application rate in southern China.


Assuntos
Oryza , Esterco/análise , Fertilizantes/análise , Produção Agrícola/métodos , Agricultura/métodos , Solo , China , Nitrogênio/análise
8.
Fish Shellfish Immunol ; 140: 108974, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37482205

RESUMO

As a pleiotropic cytokine consisting of IL-12p35 and IL-12p40, Interleukin-12 (IL-12) features in inflammation regulation and anti-bacterial immunity. While IL-12 homologs have been identified in non-mammalian species, the precise mechanisms by which IL-12 contributes to early adaptive immune responses in vertebrates remain incompletely understood. Herein, an evolutionary conserved Oreochromis niloticus IL-12 (defined as OnIL-12) was identified by synteny characterization, structural comparisons and phylogenetic pattern of IL-12p35b and IL-12p40a. IL-12p35b and IL-12p40a exhibited widespread expression in lymphoid-related tissues of tilapia, while their mRNA expression in head-kidney demonstrated a significant increase after Edwardsiella piscicida infection. Compared with other lymphocytes, recombinant OnIL-12 (rOnIL-12) displayed stronger affinity binding to T cells. Although stimulation of lymphocytes with the p35b or p40a subunit resulted in a significant induction of IFN-γ expression, rOnIL-12 showed stronger potential to promote IFN-γ expression than these subunits. rOnIL-12 not only elevated the mRNA expression level Th1 cell-associated transcription factor T-bet in lymphocytes, but also increased the proportion of CD4-1+IFN-γ+ lymphocytes. Moreover, the mRNA and phosphorylation levels of STAT1, STAT3, STAT4 and STAT5 were enhanced by rOnIL-12. These findings will offer previous evidence for further exploration into the regulatory mechanisms of Th1 cellular immunity in early vertebrates.


Assuntos
Ciclídeos , Interleucina-12 , Animais , Interleucina-12/genética , Células Th1 , Ciclídeos/genética , Ciclídeos/metabolismo , Filogenia , Interferon gama/genética , Interferon gama/metabolismo , RNA Mensageiro/metabolismo
9.
Heliyon ; 9(6): e16697, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332978

RESUMO

Water quality index (WQI) plays a crucial role in guiding water resource management. However, WQI calculation methods are not uniform, especially the selection of water parameters and the weighting given to each water parameter (Pi). To optimize WQI calculation, 132 water samples from seven rivers and from Chaohu Lake (33 sampling sites in Chaohu Lake Basin) in four seasons were collected, and the water parameters and microbiota composition were analyzed using high-throughput sequencing of 16 S rDNA. The correlation coefficient R2 between water parameters and microbiota composition using redundancy analysis with the Monte Carlo method were calculated, and the water parameters that significantly correlated with the microbiota composition were selected to calculate WQImin. The results showed that TP, COD, DO, and Chl a correlated significantly with water microbiota composition. WQIb calculated by substituting R2 for Pi was more consistent with the similarity between the microbiota compositions. WQIminb calculated using TP, COD, and DO was consistent with WQIb. The results of WQIb and WQIminb were more consistent than those of WQI and WQImin. These results imply that using R2 instead of Pi could help obtain a more stable WQIb that could better reflect the biological characteristics of the Chaohu Lake Basin.

10.
Fish Shellfish Immunol Rep ; 4: 100087, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36873098

RESUMO

As a pleiotropic cytokine in the interleukin (IL)-12 family, IL-27ß plays a significant role in regulating immune cell responses, eliminating invading pathogens, and maintaining immune homeostasis. Although non-mammalian IL-27ß homologs have been identified, the mechanism of whether and how it is involved in adaptive immunity in early vertebrates remains unclear. In this study, we identified an evolutionarily conserved IL-27ß (defined as OnIL-27ß) from Nile tilapia (Oreochromis niloticus), and explored its conserved status through gene collinearity, gene structure, functional domain, tertiary structure, multiple sequence alignment, and phylogeny analysis. IL-27ß was widely expressed in the immune-related tissues/organ of tilapia. The expression of OnIL-27ß in spleen lymphocytes increased significantly at the adaptive immune phase after Edwardsiella piscicida infection. OnIL-27ß can bind to precursor cells, T cells, and other lymphocytes to varying degrees. Additionally, IL-27ß may be involved in lymphocyte-mediated immune responses through activation of Erk and JNK pathways. More importantly, we found that IL-27ß enhanced the mRNA expression of the Th1 cell-associated cytokine IFN-γ and the transcription factor T-bet. This potential enhancement of the Th1 response may be attributed to the activation of the JAK1/STAT1/T-bet axis by IL-27ß, as it induced increased transcript levels of JAK1, STAT1 but not TYK2 and STAT4. This study provides a new perspective for understanding the origin, evolution and function of the adaptive immune system in teleost.

11.
Bioorg Med Chem Lett ; 83: 129176, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764469

RESUMO

Antimicrobial peptides (AMPs) have attracted considerable interest in the past decade due to their advantages for tackling antibiotic resistance. They exhibit potential antimicrobial activity through unique cell membrane destruction mechanism based on their net charge, hydrophobic properties, and α-helix. In this work, a series of HJH peptides was rationally designed and synthesized. The antimicrobial activity and cytotoxicity assays indicated that HJH-5 and HJH-6 containing hydrophobic residues and helices displayed prominent antimicrobial activity and mild cytotoxicity, respectively. These peptides may be developed for combatting microbial infections.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Membrana Celular , Resistência Microbiana a Medicamentos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
12.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36822630

RESUMO

Ralstonia pseudosolanacearum, previously known as R. solanacearum species complex (RSSC) phylotypes I and III, is a plant pathogenic bacterium causing significant yield losses in economical crops. In the May of 2020 and 2021, cigar tobacco bacterial wilt was first observed in fields in Danzhou, Hainan Province, China. A total of eight bacterial isolates were isolated and identified as R. pseudosolanacearum with race 1, biovar III by 16S rRNA gene sequencing, Biolog, and host identification. The amino acid sequence showed that Hainan strains and 15 R. pseudosolanacearum reference strains from flue-cured tobacco in Shandong and Guizhou Provinces, all belonged to RS1000 type containing the avrA gene, only Guizhou strains also had the popP1 gene. On the basis of phylotype-specific multiplex PCR amplification, mismatch repair gene and endoglucanase gene-base tree, Hainan strains were identified as phylotype I sequevar 70, and showed stronger pathogenic capabilities on three different varieties than those reference strains. This is the first report of cigar tobacco bacterial wilt caused by R. pseudosolanacearum sequevar 70. The results revealed the diversity of RSSC in Nicotiana tabacum in China and provided useful information regarding the epidemiology of cigar tobacco wilt disease, as well as the breeding for disease resistance in local cigar tobacco.


Assuntos
Ralstonia solanacearum , Produtos do Tabaco , /genética , Ralstonia solanacearum/genética , Virulência/genética , RNA Ribossômico 16S/genética , Melhoramento Vegetal , Ralstonia/genética , Variação Genética , Doenças das Plantas/microbiologia
13.
J Immunol ; 210(3): 229-244, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548476

RESUMO

The braking mechanisms to protect the host from tissue damage and inflammatory disease caused by an overexuberant immune response are common in many T cell subsets. However, the negative regulation of T cell responses and detailed mechanisms are not well understood in early vertebrates. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell immunity by IL-10. Tilapia encodes an evolutionarily conserved IL-10, whose expression in lymphocytes is markedly induced during the primary adaptive immune response against Aeromonas hydrophila infection. Activated T cells of tilapia produce IL-10, which in turn inhibits proinflammatory cytokine expression and suppresses PHA-induced T cell activation. Moreover, administration of IL-10 impairs the proliferation of tilapia T cells, reduces their potential to differentiate into Th subsets, and cripples the cytotoxic function, rendering the animals more vulnerable to pathogen attack. After binding to its receptor IL-10Ra, IL-10 activates the JAK1/STAT3 axis by phosphorylation and enhances the expression of the suppressor of cytokine signaling 3 (SOCS3), which in turn attenuates the activation of the NF-κB and MAPK/ERK signaling pathways, thus suppressing the T cell response of tilapia. Our findings elucidate a negative regulatory mechanism of T cell immunity in a fish species and support the notion that the braking mechanism of T cells executed through IL-10 existed prior to the divergence of the tetrapod lineage from teleosts. Therefore, this study, to our knowledge, provides a novel perspective on the evolution of the adaptive immune system.


Assuntos
Ciclídeos , Doenças dos Peixes , Tilápia , Animais , NF-kappa B/metabolismo , Tilápia/metabolismo , Interleucina-10/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas de Peixes/metabolismo
14.
J Biol Chem ; 299(2): 102843, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581209

RESUMO

Transforming growth factor-ß1 (TGF-ß1) can suppress the activation, proliferation, and function of many T-cell subsets, protecting organisms from inflammatory and autoimmune disease caused by an overexuberant immune response. However, whether and how TGF-ß1 regulates T-cell immunity in early vertebrates remain unknown. Here, using a Nile tilapia (Oreochromis niloticus) model, we investigated suppression of the T-cell response by TGF-ß1 in teleost species. Tilapia encodes an evolutionarily conserved TGF-ß1, the expression of which in lymphocytes is significantly induced during the immune response following Edwardsiella piscicida infection. Once activated, tilapia T cells increase TGF-ß1 production, which in turn suppresses proinflammatory cytokine expression and inhibits T-cell activation. Notably, we found administration of TGF-ß1 cripples the proliferation of tilapia T cells, reduces the potential capacity of Th1/2 differentiation, and impairs the cytotoxic function, rendering the fish more vulnerable to bacterial infection. Mechanistically, TGF-ß1 initiates the TGF-ßR/Smad signaling pathway and triggers the phosphorylation and nuclear translocation of Smad2/3. Smad3 subsequently interacts with several transcriptional partners to repress transcription of cytokines IL-2 and IFN-γ but promote transcription of immune checkpoint regulator CTLA4 and transcription factor Foxp3. Furthermore, TGF-ß1/Smad signaling further utilizes Foxp3 to achieve the cascade regulation of these T-cell genes. Taken together, our findings reveal a detailed mechanism by which TGF-ß1 suppresses the T cell-based immunity in Nile tilapia and support the notion that TGF-ß1 had already been employed to inhibit the T-cell response early in vertebrate evolution, thus providing novel insights into the evolution of the adaptive immune system.


Assuntos
Ciclídeos , Fatores de Transcrição Forkhead , Proteína Smad3 , Linfócitos T , Fator de Crescimento Transformador beta1 , Animais , Ciclídeos/imunologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
15.
Nanomaterials (Basel) ; 12(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36558276

RESUMO

In recent years, graphene has shown great application prospects in tunable microwave devices due to its tunable conductivity. However, the electromagnetic (EM) properties of graphene, especially the dynamic tunning characteristics, are largely dependent on experimental results, and thus are unable to be effectively predicted according to growth parameters, which causes great difficulties in the design of graphene-based tunable microwave devices. In this work, we systematically explored the impact of chemical vapor deposition (CVD) parameters on the dynamic tunning range of graphene. Firstly, through improving the existing waveguide method, the dynamic tunning range of graphene can be measured more accurately. Secondly, a direct mathematical model between growth parameters and the tunning range of graphene is established. Through this, one can easily obtain needed growth parameters for the desired tunning range of graphene. As a verification, a frequency tunable absorber prototype is designed and tested. The good agreement between simulation and experimental results shows the reliability of our mathematic model in the rapid design of graphene-based tunable microwave devices.

16.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430723

RESUMO

MSClustering is an efficient software package for visualizing and analyzing complex networks in Cytoscape. Based on the distance matrix of a network that it takes as input, MSClustering automatically displays the minimum span clustering (MSC) of the network at various characteristic levels. To produce a view of the overall network structure, the app then organizes the multi-level results into an MSC tree. Here, we demonstrate the package's phylogenetic applications in studying the evolutionary relationships of complex systems, including 63 beta coronaviruses and 197 GPCRs. The validity of MSClustering for large systems has been verified by its clustering of 3481 enzymes. Through an experimental comparison, we show that MSClustering outperforms five different state-of-the-art methods in the efficiency and reliability of their clustering.


Assuntos
Biologia Computacional , Software , Biologia Computacional/métodos , Filogenia , Reprodutibilidade dos Testes , Análise por Conglomerados
17.
Fish Shellfish Immunol ; 128: 216-227, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934242

RESUMO

As a pleiotropic cytokine mainly secreted by CD4+ T cells, interleukin (IL)-22 plays an important role in immune regulation and infection elimination. Despite IL-22 homologues have been identified in non-mammal, whether and how IL-22 participates in the adaptive immune response of early vertebrates have not been fully addressed. In this study, we identified an evolutionarily conserved IL-22 from Nile tilapia Oreochromis niloticus (defined as OnIL-22), proved by its properties regarding sequence, gene structure, functional domain, tertiary structure and phylogeny. IL-22 was broadly expressed in lymphoid-related tissues of tilapia, and with relatively higher levels in skin, gill, intestine and liver. The expression of OnIL-22 in spleen lymphocytes was markedly induced at the adaptive immune stage after Streptococcus agalactiae infection. Moreover, once lymphocytes were activated by PMA plus ionomycin or T-cell specific mitogen PHA in vitro, OnIL-22 expression was obviously up-regulated at both mRNA and protein levels. These results thus suggest that activated T cells produce IL-22 to take part in the adaptive immune response of tilapia. Furthermore, treatment of lymphocytes with recombinant OnIL-22 increased the expression of genes related to proliferation and survival, and further promoted the proliferation and reduced the apoptosis of lymphocytes during bacterial infection or T-cell activation. These cellular effects of IL-22 seem to be associated with JAK1/STAT3 axis downstream of IL-22, because IL-22 application not only elevated the mRNA expression of JAK1 and STAT3, but also enhanced their phosphorylation in lymphocytes. Altogether, we suggest that activated T cells produce IL-22 to promote lymphocyte proliferation and survival probability via JAK1/STAT3 signaling pathway, thus participating in adaptive immune response of Nile tilapia. Our study therefore provides helpful perspective for understanding the function and mechanism of adaptive immune system in teleost.


Assuntos
Ciclídeos , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Interleucinas/metabolismo , Infecções Estreptocócicas , Animais , Proliferação de Células , Citocinas/genética , Regulação da Expressão Gênica , Ionomicina , Mitógenos , RNA Mensageiro/metabolismo , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Linfócitos T
18.
Bioorg Med Chem Lett ; 73: 128888, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839966

RESUMO

Cyclic arginine-glycine-aspartic (RGD) peptides that specifically bind to integrin ανß3 have been developed for drug delivery, tracers, and imaging for tumor diagnosis and treatment. Herein, a series of polycyclic RGD peptides containing dual, tri, and tetra rings were designed and synthesized through sortase A-mediated ligation. An in vitro test on cell adhesion inhibition indicated that the RGD peptide containing tricylic structure exhibited outstanding potency and selectivity for ανß3 integrin.


Assuntos
Integrina alfaVbeta3 , Integrina beta3 , Aminoaciltransferases , Proteínas de Bactérias , Ciclização , Cisteína Endopeptidases , Integrina alfaVbeta3/metabolismo , Integrina beta3/metabolismo , Oligopeptídeos/química
19.
Technol Cancer Res Treat ; 21: 15330338221080993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443836

RESUMO

Background: This study aimed to investigate the implication of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) polymorphism on the prognosis of anlotinib monotherapy among patients with treatment-refractory advanced nonsmall cell lung cancer (NSCLC). Methods: Designed as a retrospective study, this study included a total of 129 patients with treatment-refractory advanced NSCLC who were administered with anlotinib monotherapy. The efficacy of the patients was assessed regularly. The prognosis was performed and adverse reactions during anlotinib administration were collected. Available and appropriate biological specimens of the 129 patients were collected to perform VEGFR2 polymorphism analysis and VEGFR2 gene mRNA expression analysis accordingly. Association analysis between genotype status of VEGFR2 polymorphism and other variables was implemented in univariate and multivariate analysis. Results: Efficacy data indicated that the objective response rate (ORR) and disease control rate (DCR) of the 129 patients with NSCLC who received anlotinib monotherapy was 9.3% (95% CI: 4.9%-15.7%) and 78.3% (95%CI: 70.2%-85.1%), respectively. Additionally, prognostic data suggested that the median progression-free survival (PFS) and overall survival (OS) of the 129 patients with NSCLC were 4.1 months (95%CI: 2.84-5.36) and 10.1 months (95%CI: 8.58-11.62), respectively. Furthermore, polymorphism analysis indicated that polymorphism of 4397T>C in VEGFR2 was of clinical significance in the exploratory analysis, which exhibited that the median PFS of patients with TC/CC and TT genotype of 4397T>C polymorphism were 2.8 and 5.0 months, respectively (P = .009). Additionally, patients with TT genotype conferred a superior OS compared with those with TC/CC genotype (median OS: 11.5 vs 7.3 months, P = .016). Interestingly, mRNA expression of the VEGFR2 gene suggested that mRNA expression of VEGFR2 in PBMC specimens of patients with TC/CC genotype was significantly higher than that of patients with TT genotype (P < .001). Conclusion: Anlotinib monotherapy exhibited potential efficacy for patients with treatment-refractory advanced NSCLC. VEGFR2 polymorphism 4397T>C might be used as a promising biomarker to predict the survival of patients with NSCLC who received anlotinib administration.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Indóis , Leucócitos Mononucleares , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico , Quinolinas , RNA Mensageiro , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
20.
Mol Immunol ; 143: 122-134, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131593

RESUMO

The nucleotide oligomerization domain (NOD)-like receptor (NLR) is a relatively conserved receptor family involved in natural immunity that plays a key role in the resistance to pathogen invasion and regulation of the innate immune response. Lethenteron reissneri (lamprey) is a representative species of existing ancient jawless vertebrates. Studies of the evolutionary relationship of immune system-related molecules in lampreys can provide an important reference for the origin and evolution of innate immunity. However, the characterization and evolutionary patterns of the NLR family remain unclear in the lamprey genome. Based on the genome database of L. reissneri, we identified nine NLR genes, characterized their functional domains and chromosomal positions, and constructed a network comprising the results of gene structure and gene-collinearity analyses. Comparative genomics studies suggest that Lr-NODa and Lr-NODb most likely share the common ancestor of NOD1 and NOD2 in jawed vertebrates, and that Lr-NODb may have been generated by lamprey-specific tandem duplication of Lr-NODa. Additionally, phylogenetic analysis of the NLRC subfamily suggests that Lr-NLRC3a has ancestral traits and may be derived from the common ancestor of another vertebrate NLRC subfamily. Further analysis of the formation of the NLRC subfamily has shown that exon shuffling, domain recombination, and chromosome rearrangement play important roles in its structural evolution. Furthermore, real-time quantitative polymerase chain reaction shows that most NLR genes in lamprey are highly expressed in the immune tissues of the heart, gill, and supraneural body, with these genes also showing significant responses to polyinosinic-polycytidylic acid infection. These results indicate that NLR genes are involved in the immune protection of L. reissneri and provide an important theoretical foundation for studies of the functional evolution of vertebrate NLRs involved in the innate immune system.


Assuntos
Regulação da Expressão Gênica , Genoma , Lampreias/genética , Lipopolissacarídeos/farmacologia , Proteínas NLR/genética , Poli I-C/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Éxons/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade , Íntrons/genética , Proteínas NLR/química , Proteínas NLR/metabolismo , Filogenia , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia/genética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...